Technical Samples
GERMAN
53. Leistung der Wechselstrommaschinen in Abhängigkeit der Dimensionen.
Vergrössert man sämtliche linearen Grössen einer Maschine auf das m-fache, so leistet dieselbe im allgemeinen nicht m3-mal mehr, sondern mx-mal mehr, wobei x um den Wert 2,5 bis 3,5 schwankt. Vorausgesetzt ist dabei, dass die Umfangsgeschwindigkeit dieselbe bleibt, also die Umdrehungszahl mit zunehmender Leistung abnimmt. Die Leistung wächst also langsamer als das Gewicht. Das Gewicht der üblichen Mehrphasengeneratoren schwankt zwischen 30 und 100 kg pro KW, ohne Rücksicht auf die Touren. Rechnet man verschieden grosse Mehrphasengeneratoren auf gleiche Touren um, so findet man für 30 bis 50 KW-Maschinen 20 bis 40 kg pro KW und 1000 Touren. Der Wert fällt bei grossen Generatoren von 1000 KW bis auf 3 herunter. Für Einphasengeneratoren gelten um 30 Proc. grössere Werte.
Wilson nennt den Quotienten Voltampère: Minutliche Umdrehungen, “Massenfaktor”. Bei wachsendem Massenfaktor nimmt das Gewicht und auch der Preis anfangs ziemlich schnell zu, nachher steigt das Verhältnis geradlinig an. Während sich Mehrphasenmaschinen bis zu einem Massenfaktor 100 annähernd wie Gleichstrommaschinen verhalten, werden grössere Modelle schwerer. Ein direkter Vergleich von Gleich- und Wechselstrommaschinen ist in mancher Hinsicht schwierig, da Wechselstrommaschinen bezüglich Umfangsgeschwindigkeit, Durchmesser, Rückwirkung, Polzahl etc. anders entworfen werden als Gleichstrommaschinen…
ENGLISH
53. Power output of A.C. generators as a function of their dimensions.
If one increases all the linear dimensions of a generator by a factor of m, it will generally increase its output not by m3, but rather by mx, where x ranges from 2.5 to 3.5. This is assuming that the peripheral velocity remains the same, i.e., that the speed of revolution decreases with increasing output. Thus, power output increases more slowly than mass. The mass of standard multiphase generators ranges from 30 to 100 kg per KW, without regard to revolutions. If one recalculates multiphase generators of different sizes based on a uniform number of revolutions, for 30 to 50 KW machines one finds a range of 20 to 40 kg per KW and 1000 revolutions. For large 1000 KW generators, the value falls to 3. For single-phase generators, the values are around 30 percent higher.
Wilson calls the ratio of volt-amperes to r.p.m. the “mass factor.” As the mass factor goes up, the mass and also the cost increase rather quickly to start, but afterwards the ratio rises in a straight line. Whereas multiphase generators up to a mass factor of 100 behave nearly the same as D.C. generators, larger models become heavier. In many respects, it is difficult to compare D.C. and A.C. generators directly, since A.C. generators are designed differently than D.C. machines with respect to peripheral velocity, diameter, reaction, number of poles, etc.
ITALIAN
Il telescopio è composto dalle seguenti parti:
- specchio primario sferico (fig. 2, 4), forato al centro, in materiale a basso coefficiente di dilatazione termica (ad es. vetro Pyrex® or vetroceramica Zerodur®), sulla cui superficie concava sono depositati, sotto vuoto, uno strato moleculare di alluminio e uno stato protettivo di quarzo;
- correctore a sub-apertura (fig. 2, 5), di diametro inferiore a quello dello specchio primario, costituito da più elementi ottici in vetri con appropriati indici di rifrazione, che ha lo scopo di correggere le aberrazioni ottiche introdotte dallo specchio primario;
- specchio secondario sferico, ricavato sull’ultima superficie del gruppo di elementi ottici del correttore, che ha lo scopo di rimandare il fascio di luce verso il fuoco dello strumente, attraverso il foro centrale del primario, allungandone nel contempo la lunghezza focale;
- cella porta-specchio primario (fig. 4, 6), in lega leggera, che ha la funzione di elemento portante della struttura, oltre che di alloggiamento del primario;
ENGLISH
The telescope consists of the following parts:
- a spherical primary mirror (Fig. 2: 4), perforated in the center, of a material with a low thermal expansion coefficient (for ex. Pyrex® glass or Zerodur® glass-ceramic), on the concave surfaces of which are deposited, under vacuum, a molecular layer of aluminum and a protective layer of quartz;
- sub-aperture corrector (Fig. 2: 5), of a smaller diameter than that of the primary mirror, consisting of several optical elements of glass with appropriate refraction indices, which has the aim of correcting the optical aberrations introduced by the primary mirror;
- spherical secondary mirror, obtained on the last surface of the group of optical elements of the corrector, which has the aim of returning the band of light toward the focus of the instrument, through the central hole of the primary mirror, while at the same time extending its focal length;
- a primary mirror-carrying cell (Fig. 4: 6), of light alloy, which has the function of an element carrying the structure, in addition to housing the primary mirror;
DUTCH
Uit het Oostenrijkse octrooischrift 238.697 is een inrichting voor het scheiden, resp. verrijken van gasvormige mengsels bekend. Deze bekende inrichting heeft een met hoge snelheid omlopende schijf, welke een in radiale richting verlopend, ringvormig toevoerbereik voor het mengsel heeft, dat door tenminste één, in radiale richting verlopende mondstukspleet van een ringvormig mondstuk onderverdeeld is en het toevoerbereik aansluitend aan de mondstukspleet nagenoeg in het vlak van de spleet een ringvormig, in radiale richting verlopend afvoerkanaal voor de zware fractie van het mengsel en naar beide zijden van de mondstukspleet in radiale richting verlopende, ringvormige afvoerkanalen voor de lichte fractie van het mengsel heeft. Deze bekende inrichting heeft echter voor het scheiden van isotopen, in het bijzonder het scheiden van uraan-isotopen in de practijk niet voldaan.
ENGLISH
Austrian patent 238,697 discloses a device for separating or enriching gaseous mixtures. This known device has a high-speed, rotating disk, which has an annular supply zone for the mixture running in the radial direction, which is divided from an annular filter by at least one filter fissure running in the radial direction, and the supply zone adjacent to the filter fissure has an annular discharge channel running in the radial direction practically in the plane of the fissure for the heavy fraction of the mixture and annular discharge channels running in the radial direction to both sides of the filter fissure for the light fraction of the mixture. However, this known device was inadequate in practice for separating isotopes, particularly uranium isotopes.
SPANISH
Barrena: Herramienta para perforar pozos de aceite y/o gas. Una barrena consiste de un elemento de corte y de un elemento de circulación. El elemento de corte puede ser de acero dentado, botones de carburo de tungsteno o de diamante. El elemento de circulación esta constituido por conductos que permiten que el fluido pase a través de la barrena y utilice la corriente hidráulica del lodo para mejorar la velocidad de penetración.
ENGLISH
Drill [barrena]: Tool for drilling oil and/or gas wells. A drill consists of a cutting element and a circulation element. The cutting element can be made of toothed steel, or tungsten carbide or diamond knobs. The circulation element is constituted by conduits that allow the fluid to flow through the drill and it uses the hydraulic current of the sludge to improve the speed of penetration.
FRENCH
Abstract
L'invention concerne une lampe à gradation et détection automatique (1) qui guide la lumière ambiante jusqu'à un capteur (12) installé dans un abat-jour (13) et au niveau d'une base à travers un conducteur de lumière (14). La lampe à gradation et détection automatique (1) ajuste automatiquement un état d'émission de lumière de sources de lumière à DEL (11) en fonction de la lumière ambiante par un processeur (15). Le processeur (15) comprend une unité de filtre et une unité de modulation, l'unité de filtre recevant une forme d'onde de signal détecté du capteur (12) et une forme d'onde de tension de commande des sources de lumière à DEL (11).
ENGLISH
Abstract
The invention relates to an automatic gradation and sensoring lamp (1) which directs ambient light to a sensor (12) installed in a light shade (13) and at the level of a base across a light conductor (14). Automatic gradation and sensoring lamp (1) automatically adjusts a state of light emission from LED light sources (11) as a function of the ambient light by means of a processor (15). Processor (15) includes a filtering unit and a modulation unit; the filtering unit receives a form of signal wave detected by sensor (12) and a form of command power wave from LED light sources (11).